Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Int J Biol Macromol ; 267(Pt 1): 129256, 2024 May.
Article En | MEDLINE | ID: mdl-38493823

In the present study, the commercially available three different fabrics cotton, nylon and cotton/nylon were modified by chitosan and silver nanoparticles using a crosslinker triethyl orthoformate (TEOF). Resulted cotton­silver (Ag-Cs-Cot), nylon­silver (Ag-Cs-Nyl) and cotton-nylon silver (Ag-Cs-Cot-Nyl) fabrics showed significant anti-bacterial activity even after 50 washing cycles. Silver nanoparticles were prepared by reducing silver nitrate through sodium borohydride at 0 °C. In FTIR spectra the peak at near 1650 cm-1 confirmed that TEOF mediated attachment of chitosan with fabrics (due to C=N) and the stretching of secondary amine near the 3375 cm-1 indicated the silver attachment to the amine group of the chitosan. In Scanning Electron Microscope (SEM) images smooth surfaces of fabrics without any damage by modification process were observed. The antibacterial activity was Analyzed by agar diffusion and broth dilution assays against Escherichia coli and Staphylococcus aureus bacterial strains and results showed 90% bacterial inhibition against E. coli and 89% bacterial inhibition against S. aureus. For testing the antibacterial durability, the modified fabrics were washed with non-ionic detergent (10g/l) for 15 minutes under aggressive stirring (100 rpm) at room temperature. The modified fabrics retained antibacterial activity over the 50 washing cycles. Finally, the commercial potential of cotton-silver fabric was evaluated by stitching it with the socks of football players and interestingly results showed that the modified fabric on the socks showed more than 90% bacterial inhibition as compared to the plain fabric after 70 minutes of playing activity.


Anti-Bacterial Agents , Chitosan , Cotton Fiber , Escherichia coli , Metal Nanoparticles , Nylons , Silver , Staphylococcus aureus , Textiles , Chitosan/chemistry , Chitosan/pharmacology , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nylons/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Formates/chemistry
2.
J Biomed Mater Res B Appl Biomater ; 112(1): e35344, 2024 01.
Article En | MEDLINE | ID: mdl-37942693

The prolonged hypoxic conditions hinder chronic wounds from healing and lead to severe conditions such as delayed re-epithelialization and enhanced risk of infection. Multifunctional wound dressings are highly required to address the challenges of chronic wounds. Herein, we report polyurethane-coated sodium per carbonate-loaded chitosan hydrogel (CSPUO2 ) as a multifunctional dressing. The hydrogels (Control, CSPU, and CSPUO2 ) were prepared by freeze gelation method and the developed hydrogels showed high porosity, good absorption capacity, and adequate biodegradability. The release of oxygen from the CSPUO2 hydrogel was confirmed by the increase in pH and a sustained oxygen release was observed over the period of 21 days, due to polyurethane (CSPU) coating. The CSPUO2 hydrogel exhibited around 2-fold increased angiogenic potential in CAM assay when compared with Control and CSPU dressing. CSPUO2 also showed good level of antibacterial efficacy against E. coli and S. aureus. In a full-thickness rat wound model, CSPUO2 hydrogel considerably accelerated wound healing with exceptional re-epithelialization granulation tissue formation less inflammatory cells and improved skin architecture highlighting the tremendous therapeutic potential of this hydrogel when compared with control and CSPU to treat chronic diabetic and burn wounds.


Chitosan , Rats , Animals , Chitosan/pharmacology , Hydrogels/pharmacology , Oxygen/pharmacology , Escherichia coli , Staphylococcus aureus , Angiogenesis , Polyurethanes , Wound Healing , Carbonates , Anti-Bacterial Agents/pharmacology
3.
J Tissue Eng Regen Med ; 16(5): 460-471, 2022 05.
Article En | MEDLINE | ID: mdl-35246945

This research on a thyroxine/heparin-based cotton wound dressing tests angiogenic and wound healing ability of thyroxine/heparin in a chick chorionic allantoic membrane bioassay and in skin wounds in healthy rats. Commercially available cotton dressings were simply loaded with thyroxine/heparin solutions and coated with wax. Prior to undertaking the animal study, we assessed in vitro release of thyroxine/heparin from coated and uncoated cotton dressings. Both showed more than 85% release of drug over 14 days, though the lesser release was observed in wax-coated thyroxine/heparin dressing as compared to uncoated thyroxine/heparin dressing. Testing of angiogenesis through CAM assay proved good angiogenic potential of heparin and thyroxin, but the thyroxine found more angiogenic than heparin. In animal study, full-thickness skin wounds of 20 mm diameter showed good healing in both heparin and thyroxine-treated groups. But the most striking result was seen in the thyroxine-treated group where thyroxine showed significant difference with heparin-treated group and completely healed the wounds in 23 days. Thus, the study suggest that thyroxine possesses greater angiogenic and wound healing potential than heparin, and the use of thyroxine/heparin-loaded wax-coated cotton dressing could be a cost-effective option for the management of chronic wounds.


Heparin , Thyroxine , Animals , Bandages , Heparin/pharmacology , Rats , Thyroxine/pharmacology , Wound Healing
4.
J Control Release ; 330: 1152-1167, 2021 02 10.
Article En | MEDLINE | ID: mdl-33197487

The central nervous system (CNS) encompasses the brain and spinal cord and is considered the processing center and the most vital part of human body. The central nervous system (CNS) barriers are crucial interfaces between the CNS and the periphery. Among all these biological barriers, the blood-brain barrier (BBB) strongly impede hurdle for drug transport to brain. It is a semi-permeable diffusion barrier against the noxious chemicals and harmful substances present in the blood stream and regulates the nutrients delivery to the brain for its proper functioning. Neurological diseases owing to the existence of the BBB and the blood-spinal cord barrier have been terrible and threatening challenges all over the world and can rarely be directly mediated. In fact, drug delivery to brain remained a challenge in the treatment of neurodegenerative (ND) disorders, for these different approaches have been proposed. Nano-fabricated smart drug delivery systems and implantable drug loaded biomaterials for brain repair are among some of these latest approaches. In current review, modern approaches developed to deal with the challenges associated with transporting drugs to the CNS are included. Recent studies on neural drug discovery and injectable hydrogels provide a potential new treatment option for neurological disorders. Moreover, induced pluripotent stem cells used to model ND diseases are discussed to evaluate drug efficacy. These protocols and recent developments will enable discovery of more effective drug delivery systems for brain.


Neurodegenerative Diseases , Blood-Brain Barrier , Brain , Central Nervous System , Drug Delivery Systems , Humans , Neurodegenerative Diseases/drug therapy
...